Database Design | 127

classes to represent every possible combination, you
thousands of classes. If you have more than a dozen
with simple properties.

‘Il get a combinatorial explosion and
or so classes, see if you can replace some

> Does a class have only a single subclass? If so, then you can probably remove it and move
whatever it was trying to represent into the subclass,
> If there a class at the bottom of the hierarchy that is never instantiated? If the car hierarchy
has a HalfTrack class and the program never makes an instance of that class, then you
probably don’t need the HalfTrack class.
> Do the classes all make common sense? If the car hierarchy contains a Helicopter class,
there’s probably something wrong. Either the class doesn’t belong there or you should
i rename some classes so things make sense. (Perhaps you need a vehicle class?)
B >
8

Do classes represent differences in a property’s value rather than in behavior or the presence
of properties? A simple sales program might not need separate classes to represent notebooks
and three-hole punches because they’re both simple products that you sell one at a time, You
might want a separate class for more expensive objects like computers because they might
have a warranty property that notebooks and hole punches probably don’t have.

R

E
B

Object Composition

Inheritance is one way you can reuse code. A child class inherits all of the code defined by its

parent class, so you don’t need to write it again. Another way to reuse code is object composition, a
technique that uses existing classes to build more complex classes.

For example, suppose you define a person class th
properties. Now you want to make a Company clas
person.

at has FirstName, LastName, Address, and Phone
s that should include information about a contact

You could make the Company class inherit from the p

LastName, Address, and Phone properties. That would give you places to store the contact person’s
information, but it doesn’t make intuitive sense. A company is not a kind of person (despite certain
Supreme Court rulings), so company should not inherit from pPerson.

erson class so it would inherit the FirstName,

A better approach is to give the company class a new property of type Person called

- ContactPerson. Now the Company class gets the benefit of the code defined by the Person class
- Without the illogic and possible confusion of inheriting from person.

This approach also lets you place more than one Person object inside the Company class. For example,
- ifyou decide the Company class also needs to store information about a billing contact and a shipping
- 2

- fontact, you can add more person objects to the class. You couldn’t do that with inheritance.

ATABASE DESIGN

here are many different kinds of databases that you can use to build an application. For example,

ST
SPeCialized kinds of databases store hierarchical data, documents, graphs and networks, key/value
- Pais, ang objects. However, the most popular kind of darabases are relational databases.

128 | CHAPTER®6 LOW-LEVEL DESIGN

DATABASE RANKINGS

To see the top database engines ranked by popularity, go to db-engines.com/en/
ranking. It’s a pretty interesting list.

Relational databases are simple, easy to use, and provide a good set of tools for searching,
combining data from different tables, sorting results, and otherwise rearranging data.

Like object-oriented design, database design is too big a topic to squeeze into a tiny portion of
this book. However, there is room here to cover a few of the most important concepts of database
design. You can find a book on database design for more complete information. (For example, see
my book Beginning Database Design Solutions, Wrox, 2008.)

The following section briefly explains what a relational database is. The sections after that explain
the first three forms of database normalization and why they are important.

Relational Databases

Before you learn about database normalization, you need to at least know the basics of relational

)

s

B

i)
databases. 2

& |
A relational database stores related data in tables. Each table holds records that contain pieces of 2
data that are related Sometimes records are called tuples to emphasize that they contain a set of |

related values.

Sy A

The pieces of data in each record are called fields. Each field has a name and a data type. All the
values in different records for a particular field have that data type.

Figure 6-4 shows a small Customer table holding five records. The table’s fields are CustomerId,
FirstName, LastName, Street, City, State, and Zip. Because the representation shown in Figure 6-4
lays out the data in rows and columns, records are often called rows and fields are often called columns.

| Customerld FirstName LastName L IR State Zip |
1028 Veronica Jenson 176 Bradley Ave Abend AZ 87351 '
2918 Kirk Wood 61 Beech St Bugsville CcT 04514

7910 Lila Rowe 8391 Cedar Ct Cobblestone sC 35245
3198 Deirdre Lemon 2819 Dent Dr Dove DE 29183
5002 Alicia Hayes 298 Elf Ln Eagle Co 83726

FIGURE 6-4: A table’s records are often called rows and its fields are often called columns.

The “relational” part of the term “relational database” comes from relationships defined between the
database’s tables. For example, consider the orders table shown in Figure 6-5. The customers
table’s customer1d field and the orders table’s CustomerId field form a relationship between the two
tables. To find a particular customer’s orders, you can look up that customer’s customerzq in the
Customers table in Figure 6-4, and then find the corresponding Orders records.

e —

BT

%,

e T R T T

Database Design | 129

Customerld Orderld DateOrdered DateFilled DateShipped
1298 4/1/2015 4/4/2015 4/4/2015
1982 4/1/2015 4/3/2015 4/4/2015
2917 4/2/2015 4/7/2015 4/9/2015
9201 4/5/2015 4/6/2015 4/9/2015
L 1028 3010 4/9/2015 4/13/2015 4/14/2015

FIGURE 6-5: The Customers table’s Customerld column provides a link to
the Orders table’s CustomerID column.

One particularly useful kind of relationship is a foreign key relationship. A foreign key is a set of
one or more fields in one table with values that uniquely define a record in another table,

For example, in the orders table shown in Figure 6-5, the Customer1d field uniquely identifies a
record in the customers table. In other words, it tells you which customer placed the order. There
may be multiple records in the Orders table with the same CustomerId (a single customer can place
multiple orders), but there can be only one record in the customers table that has a particular
CustomerId value,

The table containing the foreign key is often called the child table, and the table that contains the
uniquely identified record is often called the parent table. In this example, the orders table is the
child table, and the customers table is the parent table.

LOOKUP TABLES

A lookup table is a table that contains values just to use as foreign keys.

For example, you could make a States table that lists the states that are allowed
by the application. If your company has customers only in New England, the
table might contain the values Maine, New Hampshire, Vermont, Massachusetts,

Connecticut, and Rhode Island.

The customers table would be a child table connected to the States table with a
foreign key. That would prevent a user from adding a new customer in a state that
wasn’t allowed,

In addition to validating user inputs, lookup tables allow the users to configure
the application. If you let users modify the states table, they can add new records
when they decide to work with customers in new states,

Building a relational database is easy, but unless you design the database properly, you may
€ncounter unexpected problems. Those problems may be that:

'§ Duplicate data can waste space and make updating values slow.

You may be unable to delete one piece of data without also deleting another unrelated piece
of data.

130 | CHAPTER 6 LOW-LEVEL DESIGN

First Normal Form

First normal form (INF) basically says the table can be placed meaningfully in 5 relational
table h

database, It means the as a sensible, down-to-earth structure like the kind your grandma
used to make.

S automatically, so if you don’t do

The official requirements for a table to be in 1NF are:
Each column must have a unique name,

The order of the rows and columng doesn’t matter.
Each column muyst have a single data type.

No two rows can contain identica| values.

Each column muyst contain a single vaye.

SN o

Columns cannot contain repeating groups.

To see how you might be tricked into breaking these rules,
fantasy adventyre camp. You teach kids how to whack eac
like. Now consider the signup sheet shown in Table 6-1.

SUppose you’re a weapons instructor ar a
h other safely with foam swords and the

TABLE 6-1: Weapons Training Signup Sheet

NAME G | WEAPON | WEAPON
Shelly Silva Broadsword

Louis Christenson Bow

Lee Hall Katana

Sharon Simmons Broadsword Bow
Felipe Vega Broadsword Katana
Louis Christenson Bow

Kate Ballard Everything

e R e

e s I

2% o

Database Design | 131

Here campers list their names and weapons for which they want training. You’ll call them in for
instruction on a first-come-first-served basis.

This signup sheet violates the 1NF rules in several ways.

It violates Rule 1 because it contains two columns named weapon. The idea is that a camper might

want help with more than one weapon. That makes sense on a signup sheet but won’t work in a
relational database.

It violates Rule 2 because the order of the rows indicates the order in which the campers signed up
and the order in which you’ll tutor them. In other words, the ordering of the rows is important,
(The order of the columns might also be important if you assume the first Weapon column holds the
camper’s primary weapon.)

It violates Rule 3 because Kate Ballard didn’t enter the name of a weapon in the first weapon

column. Ideally, that column’s data type would be weapon and campers would just enter a weapon’s
name, not a general comment such as “Everything.”

It violates Rule 4 because Louis Christenson signed up twice for tutoring with the bow. (I guess he
wants to get really good with the bow.)

The signup sheet doesn’t violate Rule 5, but that’s mostly due to luck. There’s nothing (except

common sense) to stop campers from entering multiple weapons in each Weapon column, and that
would violate Rule $.

Here’s how you can put this signup sheet into 1NF.

Rule 1—The signup sheet has two columns named Weapon. You can fix that by changing their
names to Weaponl and Weapon2. (That violates Rule 6, but we’ll fix that later.)

Rule 2—The order of the rows in the signup sheet determines the order in which you’ll call campers
for their tutorials, so the ordering of rows is important. To fix this problem, add a new field that stores
the ordering data explicitly. One way to do that would be to add an order field, as shown in Table 6-2.

TABLE 6-2: Ordered Signup Sheet

ORDER 'NAME WEAPON1 WEAPON2
1 Shelly Silva Broadsword

2 Louis Christenson Bow

2 Lee Hall Katana

4 Sharon Simmons Broadsword Bow

5 Felipe Vega Broadsword Katana

6 Louis Christenson Bow

7 Kate Ballard Everything

An alternative that might be more useful would be to add a Time field instead of an order field,
as shown in Table 6-3. That preserves the original ordering and gives extra information that the
€ampers can use to schedule their days.

| CHAPTER ¢ LOW-LEVEL DESIGN

TABLE 6-3: Signup Sheet with Times

TIME NAME WEAPON1 WEAPON2
9:00 Shelly Silva Broadsword

9:30 Louis Christenson Bow

10:00 Lee Hall Katana

10:30 Sharon Simmons Broadsword Bow
11:00 Felipe Vega Broadsword Katana
11:30 Louis Christenson Bow

12:00 Kate Ballard Everything

Rule 3—1In Table 6-3, the weapon1 column holds two kinds of values: the name of 3 weapon or
“Everything” (for Kate Ballard).

of problem. You could split a column into two columns, each containing a single data type.
Alternatively, you could move the data into separate tables linked to the original record by a key.

In this example, I’l] replace the value “Everything” with multiple records that list a]| the possible
weapon values. The result is shown in Table 6-4.

TABLE 6-4: Signup Sheet with Explicitly Listed Weapons

TIME NAME WEAPON1 WEAPON2
9:00 Shelly Silva Broadsword

9:30 Louis Christenson Bow

10:00 Lee Hall Katana

10:30 Sharon Simmons Broadsword Bow
11:00 Felipe Vega Broadsword Katana
11:30 Louis Christenson Bow

12:00 Kate Ballard Broadsword

12:00 Kate Ballard Bow

12:00 Kate Ballard Katana

Rule 4—The current design doesn’t contain any duplicate rows, so it satisfies Rule 4,

Rule 5—Right now each column contains a single value, so the current design satisfies Rule §. (The

original signup sheet would have broken this rule if it had used a single Weapons column instead of

Database Design | 133

In the current design, the Weapon1 and weapon2 columns hold the same type and kind of data, so
they form a repeating group.

ROTTEN REPETITION

In general, adding a number to field names to differentiate them is a bad idea. If
the program doesn’t need to differentiate between the two values, then adding a
B number to their names just creates a repeating group.

The only time this makes sense is if the two fields contain similar items that truly

’ have different meanings to the application. For example, suppose a space shuttle

3 requires two pilots: one to be the primary pilot and one to be the backup in case the
primary pilot is abducted by aliens. In that case, you could name the fields that store
their names Pilot1 and Pilot2 because there really is a difference between them.

Usually in cases like this, you can give the fields more descriptive names such as
Pilot and Copilot.

Another way to look at this is to ask yourself whether the record “Sharon Simmons, Broadsword,
Bow” and the rearranged record “Sharon Simmons, Bow, Broadsword” would have the same
meaning. If the two have the same meaning even if you switch the values of the two fields, then
those fields form a repeating group.

The way to fix this problem is to pull the repeated data out into a new table. Use fields in the
original table to link to the new one. Figure 6-6 shows the new design. Here the Tutorials and
TutorialWeapons tables are linked by their Time fields.

Name Time Weapon
9:00 Shellyr Silva 9:00 érc;éds;vo.rd 7
»9:30 Louis Christenson 9:30 Bow
10:00 Lee Hall 10:00 Katana

| 10:30 Sharon Simmons 10:30 Broadsword
| 11:00 Felipe Vega 10:30 Bow

11:30 Louis Christenson 11:00 Broadsword

Kate Ballard 11:00 Katana
11:30 Bow
12:00 Broadsword
12:00 Bow

12:00 Katana

134 | CHAPTER 6 LOW-LEVEL DESIGN ‘

Second Normal Form
A table is in second normal form (2NF) if it satisfies these rules:
1. Itisin INF.
2. Al non-key fields depend on all key fields.
Without getting two technical, a key is a set of one or more fields that uniquely identifies a record. Any

table in INF must have a key because INF Rule 4 says, “No two rows can contain identical values,” That
means there must be 3 way to pick fields to guarantee uniqueness, even if the key must include every field.

For an example of 2 table that is not in 2NF, suppose you want to schedule games for campers at the
fantasy adventure camp. Table 6-5 lists the scheduled games.

TABLE 6-5: Camp Games Schedule

TIME GAME DURATION MAXIMUMPLAYERS
1:00 Goblin Launch 60 mins 8
1:00 Water Wizzards 120 mins 6
2:00 Panic at the Picnic 90 mins 12
2:00 Goblin Launch 60 mins 8
3:00 Capture the Castle 120 mins 100
3:00 Water Wizzards 120 mins 6
4:00 Middle Earth Hold’em Poker 90 mins 10
5:00 Capture the Castle 120 mins 100

You should quickly review the INE rules and convince yourself that this table js in INF. In case you
haven’t memorized them yet, the 1NF rules are:

Each column must have a unique name.
The order of the rows and columns doesn’t matter,

Each column must have 2 single data type.

1

4. No tWO rows can contain identical values,
9 Each column must contain a single valye,
6

Columns cannot contain repeating groups.

> Update anomalies—If you modify the buration or MaximumPlayers value in one row, other
TOWs containing the same game will be out of sync,

i R e

Database Design | 135

Deletion anomalies—Suppose you want to cancel the Middle Earth Hold’em Poker game at
4:00, so you delete that record. Then you’ve lost all the information about that game. You no
longer know that it takes 90 minutes and has a maximum of 10 players.

Insertion anomalies—You cannot add infor
scheduling it for play. For example,
a maximum of 30 players. You can
scheduling a game.

mation about a new game without
suppose Banshee Bingo takes 45 minutes and has
) : ; :

t add that information to the database without

i The problem with this table is that it’s trying to do too much. It’s trying to store information about
both games (duration and maximum players) and the schedule.
The reason it breaks the 2NF rules is that some n

B Recall that this table’s key fields are Time and Game. A game’s duration and maximum number of

5 players depends only on the Game and not on the Time. For example, Water Wizzards lasts for 120
; minutes whether you play at 1:00, 4:00, or midnight.

on-key fields do not depend on all the key fields.

To fix this table, move the data that doesn’t depend on the entire key

into a new table. Use the key
fields that the data does depend on to link to the original table.

Figure 6-7 shows the new design. Here the ScheduledGames table holds schedule information and
the Games table holds information specific to the games.

1:00 Goblin Launch -Goblin Laum‘:h V .60 min T 8
1:00 Water Wizzards Water Wizzards 120 min 6
2:00 Panic at the Picnic Panic at the Picnic 90 min 12
200 Goblin Launch Capture the Castle 120 min 100
3:.00 Capture the Castle Middle Earth Hold’em Poker 90 min 10
3:00 Water Wizzards Banshee Bingo 45 min 30
400 Middle Earth Hold’em Poker
5:00 Capture the Castle

£4, FIGURE 6-7: Moving the data that doesn't depend on all the table’s key fields puts this table in 2NF.

1.
2.

It is in 2NF.

It contains no transitive dependencies.

A transitiye dependency is when a non-key field’s value depends on another non-key field’s value.

136

| CHAPTER 6 LOW-LEVEL DESIGN

For example, suppose the fantasy adventure camp has a library. (So campers have something to reaq
after they get injured playing the games.) Posted in the library is the following list of the counselors’
favorite books, as shown in Table 6-6.

TABLE 6-6: Counselors’ Favorite Books

COUNSELOR FAVORITEBOOK AUTHOR PAGES
Becky Dealing with Dragons Patricia Wrede 240
Charlotte The Last Dragonslayer Jasper Fforde 306
J.C. Gil's All Fright Diner A. Lee Martinez 288
Jon The Last Dragonslayer Jasper Fforde 306
Luke The Color of Magic Terry Pratchett 288
Noah Dealing with Dragons Patricia Wrede 240
Rod Equal Rites Terry Pratchett 272
Wendy The Lord of the Rings Trilogy J.R.R. Tolkein 1178

This table’s key is the counselor field.
If you run through the INF rules, you’ll see that this table is in INF.

The table has only a single key field, so a non-key field cannot depend on only some of the key fields.
That means the table is also in 2NF.

When posted on the wall of the library, this list is fine. Inside a database, however, it suffers from
the following anomalies:

> Update anomalies—If you change the pages value for Becky’s row (Dealing with Dragons),
it will be inconsistent with Noah’s row (also Dealing with Dragons). Also if Luke changes his
favorite book to Majestrum: A Tale of Hengis Hapthorn, the table loses the data it has about
The Color of Magic.

> Deletion anomalies—If].C. quits being a counselor to become a professional wrestler and
you remove his record from the table, you lose the information about Gil’s All Fright Diner.

» Insertion anomalies—You cannot add information about a new book unless it’s someone’s
favorite. Conversely, you can’t add information about a person unless he declares a favorite book.

The problem is that some non-key fields depend on other non-key fields. In this example, the aAuthor
and Pages fields depend on the FavoriteBook field. For example, any record with FavoriteBook
The Last Dragonslayer has authoy Jasper Fforde and pages 306 no matter whose favorite it is.

DIAGNOSING DEPENDENCIES

A major hint that there is a transitive dependency in this table is that there are lots
of duplicate values in different columns. Another way to think about this is that
there are “tuples” of data (FavoriteBook+Author+Pages) that go together.

Database Design | 137

You can fix this problem by keeping only enough information to identify the dependent data and
moving the rest of those fields into a new table. In this example, you would keep the Favoritesook

field in the original table and move its dependent values Author and Pages into a new table.
Figure 6-8 shows the new design.

'§ ST ey AR R v
Becky Dealing with Dragons Dealing with Dragons
Charlotte The Last Dragonslayer The Last Dragonslayer Jasper Fforde 306
J.C. Gil's All Fright Diner Gil's All Fright Diner A. Lee Martinez 288
Jon The Last Dragonslayer / The Color of Magic Terry Pratchett 288
Luke The Color of Magic Equal Rites Terry Pratchett 272
i Noah Dealing with Dragons The Lord of the Rings Trilogy J.R.R. Tolkein 1178
| Rod Equal Rites
E:‘ ;_ Wendy The Lord of the Rings Trilogy
E FIGURE 6-8: Moving non-key fields that depend on other non-key fields into a separate table puts
7.

4 this table in 3NF.

Higher Levels of Normalization

Higher levels of normalization include Boyce-Codd normal form (BCNF), fourth normal form
(4NF), fifth normal form (SNF), and Domain/Key Normal Form (DKNF). Some of these later

levels of normalization are fairly technical and confusing, so I won’t cover them here. See a book on
database design for details.

Many database designs stop at 3NF because it handles most kinds of database anomalies without a

huge amount of effort. In fact, with a little practice, you can design database tables in 3NF from the
beginning, so you don’t need to spend several steps normalizing them.

More complete levels of normalization can also lead to confusing database designs that may make

~ using the database harder and less intuitive, possibly giving rise to extra bugs and sometimes
~ reduced performance.

One particular compromise that is often useful is to intentionally leave some data denormalized for
performance reasons. A classic example is in ZIP codes. ZIP codes and street addresses are related,

s0 if you know a street address, you can look up the corresponding ZIP code. For example, the ZIP
code for 1 Main St., Boston, MA is 02129-3786.

Ideally, normalization would tell you to store only the street address and then use it to look up the
ZIP code as needed. Unfortunately, these relationships aren’t as simple as, “All Main St. addresses in
Boston have the ZIP code 02129-3786.” ZIP codes depend on which part of the street contains the

address and sometimes even which side of the street the address is on. That means you can’t build a
table to perform a simple lookup.

——

138 | CHAPTER LOW-LEVEL DESIGN

You could build a much more complicated table to find an address’s ZIP code, perhaps with some
confusing code, Or you might use some sort of web service provided by the United States Postal Service.

Usually, however, developers just include the ZIp code as a separate field in the address. That means
there’s a lot of “unnecessary” duplication, but it doesn’t take up much extra room and it makes
looking up addresses much easier.

LOADS OF CODES

Addresses and postal codes are also related outside of the United States. For example,
the postal code for 1 Main St., Dungiven, Londonderry England is BT47 4PG, and
the postal code for 1 Main St., Vancouver, BC, Canada is V6A 3Y5. You can use
various postal websites to look up codes for different addresses in different countries,

In theory, you could look up the postal codes for any address. In practice, it’s a lot
easier to just include them in the address data.

SUMMARY

Low-level design fills in some of the gaps left by high-level design to provide extra guidance to
developers before they start writing code. It provides the leve] of detail necessary for programmers
to start writing code, or at least for them to start building classes and to finish defining interfaces.
Low-level design moves the high-level focus from what to a lower level focus on how.

Like most of the topics covered in this book, low-level design is a huge subject. There’s no way to cover
every possible approach to low-level design in a single chapter. However, this chapter does provide an
introduction to two important facets of low-level design: object-oriented design and database design.

Object-oriented design determines what classes the application uses. Database design determines
what tables the database contains and how they are related. Object-oriented design and database

can slip into the next step in software engineering: development.

The next chapter provides an introduction to software development. It explains some general
methods you can use to organize development. It also describes a few useful techniques you can use
to reduce the number of bugs that are introduced during development.

(EXERCISES

Consider the ClassyDraw classes Line, Rectangle, Ellipse, Star, and Text. What properties do
these classes all share? What Properties do they not share? Are there any properties shared by
some classes and not others? Where should the shared and nonshared properties be implemented?

Draw an inheritance diagram showing the properties you identified for Exercise 1. (Create
parent classes as needed, and don't forget the prawabie class at the top.)

